Bài giới Thiệu sách: T/p: MƯA ĐỎ- N/v Chu Lai-TV THPT LÝ THƯỜNG KIỆT,LÂM ĐỒNG.nhân dịp kỉ niệm 80 năm ngày QUỐC KHÁNH VN
Các bài Luyện tập

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: trần thị nguyệt
Ngày gửi: 14h:23' 16-03-2021
Dung lượng: 363.5 KB
Số lượt tải: 34
Nguồn:
Người gửi: trần thị nguyệt
Ngày gửi: 14h:23' 16-03-2021
Dung lượng: 363.5 KB
Số lượt tải: 34
Số lượt thích:
0 người
bài tập hàm số liên tục
kiến thức cơ bản
Định nghĩa hàm số liên tục tại một điểm.
Cho hàm số f(x) xác định trên (a,b).
Hàm số f(x) được gọi là liên tục tại điểm x0 ?(a,b) nếu:
lim f(x) = f(x0)
x? x0
Định nghĩa hàm số liên tục trên một khoảng
Hàm số f(x) xác định trên khoảng (a,b) được gọi là liên tục trên khoảng đó nếu nó liên tục tại mọi điểm của khoảng ấy.
Định nghĩa hàm số liên tục trên một đoạn
Hàm số f(x) xác định trên đoạn [a,b] được gọi là liên tục trên đoạn đó nếu nó liên tục trên khoảng (a,b) và
lim f(x) = f(a) ; lim f(x) = f(b)
x? a+ x? b-
Một số hàm số thường gặp liên tục trên tập xác định của nó
+ Hàm đa thức
+ Hàm số hữu tỉ
+ Hàm số lượng giác
bài tập
2x2-3x+1 với x > 0
f(x) =
1-x2 với x ? 0
xét sự liên tục của hàm số trên R
Giải: với x ? 0
? f(x) là các hàm đa thức nên nó liên tục
với x= 0
lim f(x) = lim (2x2-3x+1) = 1
x? 0 x? 0
f(0) = 1
Vậy lim f(x) = f(0) ?hàm số liên tục
x? 0 tại x = 0.
Do đó f(x) liên tục trên toàn trục số
Giải: với x ? 0? f(x) là các hàm đa thức nên nó liên tục
với x= 0
lim f(x) = lim (2x2-3x+1) = 1
x? 0+ x? 0+
lim f(x) = lim (1-x2) = 1
x? 0- x? 0-
f(0) = 1
Vậy lim f(x) = lim f(x)= f(0)
x? 0+ x->0-
?hàm số liên tục tại x = 0.
Do đó f(x) liên tục trên toàn trục số
3/4
Đáp án :
1. a = 0
2. a = 1
3. a = -2
4. không có giá trị nào của a
thoả mãn đề bài.
Hệ quả:
Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại ít nhất một điểm c ? (a;b) sao cho f(c) = 0.
Nói cách khác:
Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (a;b).
Hãy xét sự liên tục của hàm số tại x = 0
kiến thức cơ bản
Định nghĩa hàm số liên tục tại một điểm.
Cho hàm số f(x) xác định trên (a,b).
Hàm số f(x) được gọi là liên tục tại điểm x0 ?(a,b) nếu:
lim f(x) = f(x0)
x? x0
Định nghĩa hàm số liên tục trên một khoảng
Hàm số f(x) xác định trên khoảng (a,b) được gọi là liên tục trên khoảng đó nếu nó liên tục tại mọi điểm của khoảng ấy.
Định nghĩa hàm số liên tục trên một đoạn
Hàm số f(x) xác định trên đoạn [a,b] được gọi là liên tục trên đoạn đó nếu nó liên tục trên khoảng (a,b) và
lim f(x) = f(a) ; lim f(x) = f(b)
x? a+ x? b-
Một số hàm số thường gặp liên tục trên tập xác định của nó
+ Hàm đa thức
+ Hàm số hữu tỉ
+ Hàm số lượng giác
bài tập
2x2-3x+1 với x > 0
f(x) =
1-x2 với x ? 0
xét sự liên tục của hàm số trên R
Giải: với x ? 0
? f(x) là các hàm đa thức nên nó liên tục
với x= 0
lim f(x) = lim (2x2-3x+1) = 1
x? 0 x? 0
f(0) = 1
Vậy lim f(x) = f(0) ?hàm số liên tục
x? 0 tại x = 0.
Do đó f(x) liên tục trên toàn trục số
Giải: với x ? 0? f(x) là các hàm đa thức nên nó liên tục
với x= 0
lim f(x) = lim (2x2-3x+1) = 1
x? 0+ x? 0+
lim f(x) = lim (1-x2) = 1
x? 0- x? 0-
f(0) = 1
Vậy lim f(x) = lim f(x)= f(0)
x? 0+ x->0-
?hàm số liên tục tại x = 0.
Do đó f(x) liên tục trên toàn trục số
3/4
Đáp án :
1. a = 0
2. a = 1
3. a = -2
4. không có giá trị nào của a
thoả mãn đề bài.
Hệ quả:
Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại ít nhất một điểm c ? (a;b) sao cho f(c) = 0.
Nói cách khác:
Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (a;b).
Hãy xét sự liên tục của hàm số tại x = 0
 
Sách là sợi dây liên kết giữa các thế hệ và giữa các nền văn minh.
I. THỜI GIAN, ĐỐI TƯỢNG MƯỢN SÁCH VÀ ĐỌC SÁCH TẠI THƯ VIỆN
1. Thời gian làm việc: Theo giờ hành chính ( từ thứ 2 đến chiều thứ 6 hàng tuần)
+ Sáng làm việc từ: 7h30’ đến 11h00’
+ Chiều làm việc từ: 13h45’’ đến 17h00’
2. Đối tượng mượn sách:
Giáo viên và học sinh của trường có quyền mượn sách tại thư viện.





